THE COMPARATIVE SYNTHESIS OF ¹⁸F-FLUOROPHENYLALANINES BY ELECTROPHILIC SUBSTITUTION WITH ¹⁸F-F₂ AND ¹⁸F-AcOF

> M. Murakami, K. Takahashi, Y. Kondo*, S. Mizusawa+, H. Nakamichi+, H. Sasaki, E. Hagami, H. Iida, I. Kanno, S. Miura, and K. Uemura

Departments of Radiology and Nuclear Medicine, Neurology*, and Internal Medicine+, Research Institute for Brain and Blood Vessels-Akita, 6-10 Senshu-Kubota-Machi, Akita City, Akita 010, JAPAN

SUMMARY

Fluorination with ${}^{18}\text{F-F}_2$ and ${}^{18}\text{F-AcOF}$ were compared for the synthesis of ${}^{18}\text{F-fluorophenylalanines}$. L-phenylalanine in CF₃COOH trapped ${}^{18}\text{F-AcOF}$ more effectively than ${}^{18}\text{F-F}_2$. The main product was ortho- ${}^{18}\text{F-fluorophenylalanine}$ when ${}^{18}\text{F-AcOF}$ was used as a reagent. Lower radiochemical yield of ${}^{18}\text{F-fluorophenyl-alanines}$ and significant formation of by-product were observed in the case of ${}^{18}\text{F-F}_2$.

Key words: ¹⁸F-F₂, ¹⁸F-AcOF, ¹⁸F-fluorophenylalanines.

INTRODUCTION

Phenylalanine when labelled with a positron emitting nuclide is thought to be a useful tracer in the in-vivo study of amino acid metabolism with positron emission tomography. For this reason, $^{11}C[1]$, and $^{18}F[2,3]$ have been introduced to the carboxyl and phenyl group, respectively. The methods of fluorination [2,3] were based on the Shieman reaction that enables position specific fluorination, but required several hours to prepare ^{18}F -fluorophyenylalanine isomers. Recently, ortho- ^{18}F -fluorophenylalanine (o- ^{18}F -Phe) and para- ^{18}F -fluorphenylalanine (p- ^{18}F -Phe) were synthesized by fluorination with ^{18}F -fluorine (^{18}F -F₂) within 100 min[4,5].

0362-4803/88/050573-06**\$**05.00 (©) 1988 by John Wiley & Sons, Ltd. Received May 29, 1987 Revised September 14, 1987 The fluorination of the phenyl group with ${}^{18}F-F_2$ is an electrophilic substitution reaction. So, it was thought that ${}^{18}F$ -acetyl hypofluorite (${}^{18}F$ -AcOF) was also available for the synthesis of ${}^{18}F$ -fluorophenylalanine isomers. In this paper, we report a comparative study of fluorination, by ${}^{18}F-F_2$ and ${}^{18}F$ -AcOF methods to obtain ${}^{18}F$ -fluorophenylalanines.

RESULTS AND DISCUSSION

In this study, fluorination by ${}^{18}\text{F}-\text{F}_2$ and ${}^{18}\text{F}-\text{AcOF}$ were compared with respect to the trapping yield of ${}^{18}\text{F}$ -radioactivity, the yield of ${}^{18}\text{F}$ -fluorinated mixture, and the ratio of ${}^{18}\text{F}$ -fluorophenylalanine isomers.

More than 90 % of ¹⁸F-AcOF was trapped in the reaction vessel, but in the case of ¹⁸F-F₂ the yield was lower. The yield of ¹⁸F-fluorinated mixture based on the trapped ¹⁸Fradioactivity was almost the same for the ¹⁸F-F₂ and ¹⁸F-AcOF methods (Table 1).

<u>Table l</u>

Yield of	^{18}F -trapping	and	¹⁸ F-fluorination
----------	--------------------	-----	------------------------------

		F ₂		AcOF	
Phenylalanine	(mg)	16.7	16.8	16.6	17.0
Trapping ratio [†]	(%)	73.4	63.0	91.3	93.5
Fluorinated ratio [‡]	(%)	54.7	56.0	58.1	64.9

+ The ratio was based on the total radioactivity recovered as $^{18}{\rm F-F_2}$ or $^{18}{\rm F-CH_3COOF}.$

* The ratio of residual radioactivity after solvent evaporation against the trapped radioactivity is given.

All data was decay corrected.

The Comparative Synthesis of ¹⁸F-Fluorophenylalanines

The HPLC pattern of ¹⁸F-fluorinated compounds obtained by the ¹⁸F-F₂ method is shown in Fig. 1. Coenen et al[4,5] did not report m-¹⁸F-Phe formation by the ¹⁸F-F₂ method. However, we were not able to disprove the existence of m-¹⁸F-Phe because the isomers, m-¹⁸F-Phe and p-¹⁸F-Phe, were not separable in our HPLC and TLC conditions. The peak retention times in HPLC (Rf values in TLC) of o-¹⁸F-Phe and m-, p-¹⁸F-Phe were 12.0 min (0.48) and 13.5 min (0.56), respectively. The ¹⁸F-radioactive compounds all had UV absorbance at 254 nm.

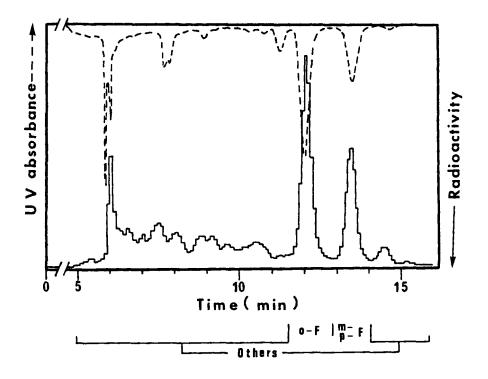


Fig. 1. Elution and fraction pattern of the ¹⁸F-fluorinated compounds. HPLC conditions are given in the text.

The yields of ¹⁸F-fluorophenylalanines by two synthetic methods are shown in Table 2. In the ¹⁸F-AcOF method, the radiochemical yield of ¹⁸F-fluorophenylalanines based on ¹⁸Ffluorinated mixture was about 70 %, and the main product was $o^{-18}F$ -Phe. When ¹⁸F-F₂ was used as the reagent, lower radiochemical yield of ¹⁸F-fluorophenylalanines (30 \sim 40 %), and significant formation of by-products were observed. In this case, the formation ratio of $o^{-18}F$ -Phe against m-, p⁻¹⁸F-Phe was about one to two times greater than that reported by Coenen et al[4]. ¹⁸F-fluorophenylalanines were obtained by both methods within 60 min from end of bombardment.

In conclusion, 18 F-AcOF is the preferred reagent for the synthesis of o- 18 F-Phe. However, either reagent is satisfactory for the synthesis of m-or p- 18 F-Phe.

<u>Table 2</u>

 F_2 Ac0F o-18F-Phe 23.6 15.0 59.9 64.0 m-,p¹⁸F-Phe 14.8 15.0 7.9 5.3 Otherst 47.1 51.3 15.7 16.8 Retained^{*} 14.5 18.7 16.5 13.9

Radiochemical yield of $^{18}{\rm F-fluorophenylalarines}$ based on $^{18}{\rm F-fluorinated}$ comounds (%)

+ Fractions are shown in Fig. 1.

* The retained fraction was calculated using the difference between the total eluted radioactivity and that injected onto the HPLC. This fraction was elutable from the column by $18 \sim 57$ ml of CH₃OH.

All data was decay corrected.

METHODS

 $\frac{1^{8}F-F_{2} \text{ production}}{1^{8}F-F_{2} \text{ gas was produced by the nuclear}}$ reaction ²⁰Ne (d, α)¹⁸F. The target gas, neon containing 0.5 % carrier F₂, was loaded into a 141 ml chamber up to 3.0 Kg/cm². After bombardment with 6.8 MeV deuterons, the target gas was recovered by 200 ml/min of helium flow.

 $\frac{18}{F-fluorination}$ In the ${}^{18}F-F_2$ method, ${}^{18}F-F_2$ was bubbled directly into the vessel containing 100 µmole of L-phenylalanine in 10 ml of CF₃COOH for 8 min at 0°C. In the ${}^{18}F-AcOF$ method, ${}^{18}F-F_2$ was passed through a column packed with AcOK/AcOH, prepared by the method of Ehrenkaufer et al[6], and was bubbled into the vessel with the same condition described above. The yield of ${}^{18}F-AcOF$ from ${}^{18}F-F_2$ was about 40 % in our routine experiments. At the end of bubbling, n-hexane was added and then the mixture was evaporated under vacuum at room temperature. The ${}^{18}F$ -radioactive residue was dissolved in 0.8 ~ 1.0 ml of water.

Purification and identificationThe 18 F-radioactive mixturein H20 was applied to a reverse phase column (Waters, µBondapak-C18, 7.6 × 300 mm) with 10 % CH3OH containing 0.1 % AcOH as amobile phase. The flow rate was 3 ml/min. The 18 F-fluoro-phenylalanines were collected as shown in Fig. 1. Their radio-chemical purities were analyzed by HPLC as above, and celluloseTLC (n-butanol 20: AcOH 3: H2O 5 as a solvent). The identifi-cation of the products was carried out by comparing their peakelution times and Rf values with those of commercially availableauthentic samples.

577

M. Murakami et al.

REFERENCES

- Casey, D.L., Digenis, G.A., Wesner, D.A., Washburn, L.C., Chaney, J.E., Hayes, R.L. and Callahan, A.P. — Int. J. Appl. Radiat. Isot. 32: 325-330 (1981).
- Hoyte, R.M., Lin, S.S., Christman, D.R., Atkins, H.L., Hauser, W. and Wolf, A.P. — J. Nucl. Med. <u>12</u>: 280-286 (1971).
- Goulding, R.W. and Palmer, A.J.— Int. J. Appl. Radiat. Isot. <u>23</u>: 133-137 (1972).
- Coenen, H.H., Bodsch, W., Takahashi, K., Hossman, A. and Stocklin, G. — J. Nucl. Med. 26: p126 (1985).
- Coenen, H.H., Bodsch, W., Takahashi, K., Hossman, A. and Stocklin, G. — Eur. J. Nucl. Med. <u>11</u>: A109 (1985).
- 6. Ehrenkaufer, R.E., Potocki, J.F. and Jewett, D.M. J. Nucl. Med. 25: 333-337 (1984).

.